
MacTech Magazine Writer’s Kit Page 1
© 1984-1996, Xplain Corporation. All rights reserved.

QUICKDRAW 3D TRICKS

By Tom Djajadiningrat and Maarten Gribnau, Delft University of Technology

Des kt o p V R u s in g Q u ickDr aw3 D, P ar t I
Using the View Plane Camera for Implementation of a Head-
Tracked Display

About the authors...
Tom Djajadiningrat (J.P.Djajadiningrat@io.TUDelft.nl) is an industrial
designer interested in products and computers which are intuitive in use.
When not trying to convince others that he will now finish his PhD thesis on
interfaces using head-tracked displays 'really soon', or hassling Maarten and
the QuickDraw 3D mailing list with silly programming questions, he dreams
of designing the 25th anniversary Macintosh.
Maarten Gribnau (M.W.Gribnau@io.TUDelft.nl) is an electrical engineer
interested in Computer Graphics and Interaction Design. He has successfully
delayed Tom’s research project so they can now both convince others that
they will complete their PhD theses 'really soon'. Apart from his research on
two-handed interfaces for 3D modeling applications, he occasionally drinks a
strong cup of Java when he is trying to program the ultimate internet golf
game.

SUMMARY

Wouldn’t it be cool to be able to look around three dimensional objects
displayed on your monitor by moving your head, just as if the objects were
standing there? Kind of like a hologram, but with the flexibility of 3D
computer graphics. Futuristic and expensive? It could be easier and cheaper
than you think. In a two part article we explain how to implement such a
system, also known as a head tracked display, on a PowerMacintosh. Head-
tracked perspective provides the user with a sense of depth without the use
of stereoscopy. To facilitate implementation we use QuickDraw 3D, Apple’s
3D graphics library. In terms of hardware all you need is a PowerMac with
QuickDraw 3D, an absolute position-measuring device with three degrees of
freedom and, preferably, a QuickDraw 3D accelerator board. This month we
discuss the graphics-related aspects of a head-tracked display. Next month
we discuss the hardware-related aspects.

MacTech Magazine Writer’s Kit Page 2
© 1984-1996, Xplain Corporation. All rights reserved.

INTRODUCTION

When we move about in everyday life we see objects in our environment
from different perspectives. As we do this it appears that objects at different
relative depths shift with respect to each other. This phenomenon, called
movement parallax, is a very strong depth cue. It is possible to mimic
movement parallax in virtual reality systems. In immersive Virtual Reality
(VR) (where the user wears a helmet) movement parallax is combined with
stereoscopy. Apart from immersive systems there is also another category of
VR systems called Desktop VR which uses a conventional monitor. Desktop
VR is a rather broad term which can mean anything from a simple system
showing a perspective “walk-through” with mouse interactivity, to a complex
system using both stereoscopy and movement parallax. With immersive VR
the user's real environment is completely replaced by a virtual one, while
with desktop VR a virtual scene is embedded within the user's real
environment. One of the good things about a desktop VR system which uses
movement parallax only is that the user’s 3D impression is considerably
improved without the need for some kind of 3D glasses and stereo rendering.
For movement parallax, all that is needed is a way of determining the user’s
head position. As a result only a minimum of headwear is required.

When the user looks around a virtual scene displayed on a monitor, his
head position changes, which can be detected by means of a position sensor
attached to his head. In response the computer can update the perspective of
the scene shown on the monitor in accordance with his new head position.
The result is that the user can look around the objects in the virtual scene as
if they were standing in front of him (Figure 1).

Figure 1, An observer looking at a virtual house displayed on a head-tracked
display. By moving his head to the right, he views the house from the right.

By moving his head to the left, he views the house from the left.

Perception psychology uses the term movement parallax to describe a
particular depth cue. In the human-interfacing community many terms are

MacTech Magazine Writer’s Kit Page 3
© 1984-1996, Xplain Corporation. All rights reserved.

used to describe desktop VR systems which make use of the movement
parallax depth cue. These terms include head-tracked display, head-slaved
virtual camera, animated perspective and virtual window system. In this
article we will use the term head-tracked display.

A HEAD-TRACKED DISPLAY ON THE MAC

Required and recommended software and hardware

What you need is a PowerMacintosh, QuickDraw 3D 1.5.3, a position
sensor with three degrees of freedom, and preferably a QuickDraw 3D
accelerator card. We use QuickDraw 3D because it facilitates communication
with input devices, and implementation of the correct coupling between
head position and camera movement.

The position sensor needs to detect position with three degrees of
freedom and needs to be suitable for attaching to the head. A low cost option
is to use a FreeD (formerly known as the “Owl”) ultrasonic tracker by
Pegasus Technologies. Other, more accurate, but also more expensive options
are, for example, a Dynasight infra-red tracker by Origin Instruments or a
Flock of Birds electro-magnetic tracker by Ascension Technologies. Please
note that we supply basic driver applications and source code for the FreeD,
the Dynasight and the Flock of Birds. We also provide information on how to
connect these devices to a Macintosh computer.

A QuickDraw 3D accelerator board is recommended because, with
movement parallax, frame rate is quite important. The lower the frame rate,
the longer the delay between establishing the sensor position and the
corresponding perspective being displayed on the monitor. In the meantime
the user may have moved to a different location. As a result of this lag, the
perspective which is displayed does not match the user’s viewing position. To
the user this mismatch expresses itself as distortion and instability of the
virtual scene.

What you should know

We assume that you are familiar with the basics of QuickDraw 3D
programming. If you have not dealt with QuickDraw 3D before we suggest
that you have a look at the introduction to QuickDraw 3D in Develop 22
(Thompson and Fernicola, 1995) or at chapter nine "QuickDraw 3D" of
"Tricks of the Mac Game Programming Gurus" (Greenstone, 1995).

OVERVIEW OF THE TWO-PART ARTICLE

There are two software components which together form our head-tracked
display: a viewer application, called MacVRoom, and a driver. As mentioned
previously, the implementation of the head-tracked display is described in
two parts. In this month’s graphics issue we give an explanation of how to

MacTech Magazine Writer’s Kit Page 4
© 1984-1996, Xplain Corporation. All rights reserved.

control the camera by the user’s head position to show the corresponding
perspective on the monitor. We also show you how to actually get the head-
tracked display up and running. This section tells you how to use
MacVRoom, how to attach the sensor to your head, and how to troubleshoot.

 Next month, we will explain how to write the driver and how to use the
Pointing Device Manager to handle the communication between the driver
and MacVRoom. We will also discuss a number of calibration methods to get
the best possible results.

Depending on your needs you may wish to read parts of or all of this and
next month’s article. See whether you fit into one of the following categories
and have a look at the overview (Figure 2). Note that for some of the
information you will have to wait till next month.

1 . I would like to see what this head-coupled perspective is about. I don’t
have a three DOF tracker though.

Read the section “Using your head-tracked display” to get an idea of what
a head-tracked display involves. Play about with MacVRoom, it switches to
mouse control in absence of a three DOF tracker.

2. I have one of the tracking devices mentioned and would like to try out the
head-coupled perspective.

Read the sections “Using your head-tracked display” and “Calibration”.
Hook up your tracker, start up the appropriate driver and play about with
MacVRoom.

3. I have a three DOF tracker, different from the ones you mentioned, and I
would like to try it with MacVRoom.

Read the section “The QuickDraw 3D Pointing Device Manager” and build a
driver for your particular tracker. Then read the sections “Using you head-
tracked display” and “Calibration”. Hook up your tracker, start up the
appropriate driver and play about with MacVRoom.

4 . I have an serial input device and I am interested in using it in conjunction
with the Pointing Device Manager. I am not interested in head-tracked
displays.

Read the section “The QuickDraw 3D Pointing Device Manager” and build a
driver for your particular input device.

5 . I have one of the tracking devices mentioned and I want to incorporate a
head-tracked display into my own QuickDraw 3D application.

Read the section “Head-tracked Camera Methods” and incorporate the
code into your own app. Then read the sections “Using your head-tracked
display” and “Calibration”. Hook up your tracker, start up the appropriate
driver and your head-coupled perspective enabled app.

MacTech Magazine Writer’s Kit Page 5
© 1984-1996, Xplain Corporation. All rights reserved.

6. I have a three DOF tracker but it is not one you mentioned. I also want to
incorporate movement parallax into my own QuickDraw 3D application.

Lucky you! You’ll have to read both parts of the article completely!

USE

PROGRAMMING
Driver

The QuickDraw 3D Pointing Device Manager
Introduction to the Pointing Device Manager
Reading Data from Serial Input Devices
Using the QuickDraw 3D Controller Object

Using the QuickDraw 3D Tracker Object

Head-tracked Camera Methods
The DVWS and Fish Tank VR

The QuickDraw 3D View Plane Camera
Characteristics of the View Plane Camera
How to control the View Plane Camera

Calibration
Why is calibration needed?
Driver requirements
Calibration method 1
Calibration method 2
Calibration method 3

VRoom

Using Your Head-tracked Display
How to Use VRoom
Where to Place the Sensor
Trouble Shooting

Figure 2, Overview of the two-part article. The subjects which are covered
this month are marked with a grey block.

HEAD-TRACKED CAMERA METHODS

The Delft Virtual Window System and Fish Tank VR

When it comes to implementing movement parallax we could use a
conventional perspective camera, position it in the virtual world to

MacTech Magazine Writer’s Kit Page 6
© 1984-1996, Xplain Corporation. All rights reserved.

correspond to the user’s head position, and orient it in such a way that it
always looks at the center of the virtual scene (Figure 3). This is what
happens when you choose Delft Virtual Window System (DVWS) (Overbeeke
et al., 1987; Smets et al., 1987) from the projection menu. Such a projection
method is also known as “on-axis” projection, because the center of the
image coincides with the camera’s viewing axis.

F FF

Figure 3, Three different observer positions (top row), the corresponding
camera positions for the DVWS projection method (middle row), and the
corresponding camera positions for the Fish Tank VR projection method
(bottom row).

The top row shows three different positions of an observer in front of a
monitor. The middle row shows the virtual camera which always is pointed
at the fixation point F. The main advantage of this projection method is that
it is perceptually robust as the virtual scene is always displayed in central
perspective. Even if the system is not properly calibrated the resulting image
does not appear distorted. As Figure 4 shows, the perspective is that of a

MacTech Magazine Writer’s Kit Page 7
© 1984-1996, Xplain Corporation. All rights reserved.

regular photograph. This means that camera movement can also be scaled
compared to observer movement. So the observer can look around the
virtual scene completely and even view it from the back with relatively small
head movements, though the scene does not appear to be stationary. Also,
observers who are not wearing the tracker and who therefore do not control
the perspective, still get an undistorted view on a rotating scene.

Implementation of the DVWS requires only placement and zooming of an
ordinary QuickDraw 3D aspect ratio camera. We assume you are familiar
with this type of camera and therefore do not explain it any further in this
article Please have a look at the routines NewAspectRatioCamera (in
ViewCreation.c) and AdjustAspectRatioCamera (in AspectRatioCamera.c) if
you need more help.

The disadvantage of an on-axis projection is that it is difficult to perfect
the illusion that the virtual scene is rigidly connected to the physical world.
When we use an on-axis projection with a conventional perspective camera
the result is a perspective image of the virtual scene. However, the user
already looks in perspective at the monitor screen which displays the image.
The result of the compounding of perspectives is that lines in the virtual
scene and lines in the real world which are meant to stay parallel do not
appear to stay perspectively parallel when the user views the virtual scene
from different angles. Therefore the virtual scene does not seem rigidly
connected to the monitor. Instead it appears to rotate relative to the
monitor. Perhaps the easiest way of thinking about this is as follows. Take a
rectangular sheet of paper and tape it to your monitor so that the edges of
the paper run parallel to the edges of the monitor. From whatever viewpoint
you look at the monitor and the sheet of paper, the edges of the monitor and
the paper will always run perspectively parallel. In other words, they always
intersect at the same vanishing point. If we create a virtual equivalent of the
sheet of paper and look at it with an Aspect Ratio Camera from different
angles, the resulting 2D image of the virtual sheet of paper will be
perspectively distorted. But this is not what we want! After all, the physical
sheet of paper never changed its shape. If we wish to avoid this
compounding of perspectives we need to use a different projection method.

MacTech Magazine Writer’s Kit Page 8
© 1984-1996, Xplain Corporation. All rights reserved.

Figure 4, Three perspectives according to the Delft Virtual Window System
projection method generated by three different head positions. From left to

right: viewed from the left, from the middle and from the right.

This projection method, which is called an “off-axis” projection method
and is often referred to as Fish Tank VR (Ware et al., 1993), is shown also in
Figure 3.

The bottom row shows the three virtual camera placements which
correspond to the observer positions in the top row. The line of sight of the
virtual camera is kept perpendicular to the display by translating the camera
without rotating it. This will prevent the compounding of perspective. The
resulting images are shown in Figure 5. Although the pictures look distorted
at first instance, you can find the head position from which they appear to
look right. To find this position, use the numbers in the calibrated
coordinate fields of each picture in the following manner. The numbers are
x,y,z coordinates, multiples of the width of the pane with the white
background. The origin of the coordinates is in the center of this pane. For
example, to position your head correctly for the left picture, move your head
three pane widths to the left, one and a half width to the top of the page and
four widths out of the page.

MacTech Magazine Writer’s Kit Page 9
© 1984-1996, Xplain Corporation. All rights reserved.

Figure 5, Three perspectives according to the Fish Tank projection method
generated by three different head positions. From left to right: viewed from

the left, from the middle and from the right.

A problem is that as the camera moves to one side, the scene will move off
the monitor in the other direction. We need to be able to specify a part of the
imaging plane which is off-axis. QuickDraw 3D conveniently provides a View
Plane camera for this purpose.

THE QUICKDRAW 3D VIEW PLANE CAMERA

 Characteristics of the View Plane Camera

Figure 6 shows a View Plane Camera and Listing 1 describes the View
Plane Camera data structure. Just as the familiar Aspect Ratio Camera, a View
Plane Camera uses a struct of type TQ3CameraData to specify its placement,
hither and yon planes, and view port. The view plane is situated
perpendicular to the camera vector at a distance specified by the view plane
parameter. The point where the camera vector intersects the view plane
defines the origin of the view plane coordinate system. We can specify which
part of the view plane we wish to render through the halfWidthAtViewPlane
(dx), halfHeightAtViewPlane (dy), centerXOnViewPlane (Cx) and
centerYOnViewPlane (Cy) parameters.

MacTech Magazine Writer’s Kit Page 10
© 1984-1996, Xplain Corporation. All rights reserved.

view plane

origin

dista
nce

dx

dy

(Cx,Cy)

Figure 6, The View Plane Camera

Listing 1: View Plane Camera data structure

typedef struct TQ3ViewPlaneCameraData
{

TQ3CameraData cameraData;
float viewPlane; // distance to view plane
float halfWidthAtViewPlane; // dx
float halfHeightAtViewPlane;// dy
float centerXOnViewPlane; // Cx
float centerYOnViewPlane; // Cy

} TQ3ViewPlaneCameraData;

How to control the View Plane Camera

We have chosen to use a right-handed coordinate system with the positive
Y-axis pointing upwards and the positive Z-axis pointing out of the monitor.
This is convenient as its orientation matches that of the FreeD and the
Dynasight when they are put on top of a monitor. The virtual camera always
remains parallel to the Z-axis so that its line of sight is always perpendicular
to the xy plane. The view plane coincides with the XY plane and the part of
view plane which is rendered is centred around the world origin (Figure 7).

MacTech Magazine Writer’s Kit Page 11
© 1984-1996, Xplain Corporation. All rights reserved.

y

x

z

poi
cl

Figure 7, View Plane Camera looking at the display space in which the model
appears. The line of sight of the camera always remains parallel to the z-axis.

cl is camera location, poi is point of interest.

There are two parts to controlling a View Plane Camera for an off-axis
projection. We need some set-up code and some code which adjusts the
camera on every nullEvent.

The set-up code is from ViewCreation.c and is in Listing 2. Although the
camera placement used in this set-up function is adjusted immediately after
start up to the tracker data, it is good practice to use values which ensure
that the scene will be visible. That way if we see an image on start up which
disappears immediately afterwards, we know that the app is rendering all
right but that afterwards the camera placement has become garbled.

The hither and yon planes truncate the viewing pyramid to a viewing
frustum. Virtual objects are clipped against this viewing frustum. To make
absolutely positive that we do not get Z-buffer problems with acceleration
cards which have only 16 bit Z-buffering we put the hither plane just in front
of the display space and the yon plane just behind it. The display space is
one QuickDraw 3D unit deep, and positioned half in front of the view plane
and half behind it. Therefore the frontmost point is at z=0.5 and backmost
point is at z=-0.5. On each nullEvent, we adjust the values of hither and yon,
which are relative to the position of the camera, to keep the hither and yon
planes at the same location in the world coordinate system.

MacTech Magazine Writer’s Kit Page 12
© 1984-1996, Xplain Corporation. All rights reserved.

The viewPort parameter lets you choose which part of the area you have
cut out of the view plane is mapped to the pane. In our case the full view
port is used and is not adjusted on a nullEvent.

When the camera is created the centerXOnViewPlane = 0 and
centerYOnViewPlane = 0 so that the part of the view plane which is rendered
is centred around the world origin. The part of the view plane which is
rendered is made one QuickDraw 3D unit wide, so the halfWidthAtViewPlane
= 0.5. When we get to the section on calibration we will see why this is
c o n v e n i e n t . T h e r a t i o o f t h e h a l f W i d t h A t V i e w P l a n e a n d
halfHeightAtViewPlane parameters should equal that of the pane width and
height. We have made it 1:√ 2 . Thus the width of the display space takes up
the full width of the pane, while the height of the display space is less than
the height of the pane. This extra height is necessary to prevent clipping of
the background planes. For example, if the pane was made to fit the height of
the cubic display space, the front half of the ground plane would be clipped
by the bottom of the pane, as soon as the user would move his eye above the
bottom of the pane. If you find that clipping still occurs, you can decrease
the pane width to height ratio to, for example, 1:2.

Listing 2: ViewCreation.c
NewViewPlaneCamera

TQ3CameraObject NewViewPlaneCamera(void)
{

TQ3Status returnVal = kQ3Failure ;

TQ3ViewPlaneCameraData perspectiveData;
TQ3CameraObject camera;

// cameraLocation is on the z-axis
TQ3Point3D from = { 0, 0, 5 };

// view plane origin at world origin
TQ3Point3D to = { 0, 0, 0 };
TQ3Vector3D up = { 0.0, 1.0, 0.0 };

float paneWidth = kPaneWidth;
float paneHeight= kPaneHeight;

perspectiveData.cameraData.placement.cameraLocation=
from;

perspectiveData.cameraData.placement.pointOfInterest=
to;

perspectiveData.cameraData.placement.upVector=up;

MacTech Magazine Writer’s Kit Page 13
© 1984-1996, Xplain Corporation. All rights reserved.

// The display space is 1 QuickDraw 3D unit deep.
// We put the hither pane just in front of the display space...
perspectiveData.cameraData.range.hither = from.z - 0.5;

// and the yon plane just behind it.
perspectiveData.cameraData.range.yon = from.z + 0.5;

// use the full viewPort
perspectiveData.cameraData.viewPort.origin.x = -1.0;
perspectiveData.cameraData.viewPort.origin.y = 1.0;
perspectiveData.cameraData.viewPort.width = 2.0;
perspectiveData.cameraData.viewPort.height= 2.0;

// the distance from the virtual camera to the view plane equals
// the z-coordinate of the camera position, since the view plane coincides with
// the xy plane, and the camera vector is parallel to the z-axis.
perspectiveData.viewPlane = from.z;

// the aspect ratio of these parameters should equal
// that of the paneWidth and paneHeight.
// For convenient calibration we've made widthAtViewPlane = 1,
// so halfWidthAtViewPlane = 0.5
perspectiveData.halfWidthAtViewPlane = 0.5;
perspectiveData.halfHeightAtViewPlane=

0.5*paneHeight/paneWidth;

// image centred around center of the xy plane
perspectiveData.centerXOnViewPlane = 0;
perspectiveData.centerYOnViewPlane = 0;

camera = Q3ViewPlaneCamera_New(&perspectiveData);

return camera ;
}

The code which adjusts the camera on every nullEvent is in Listing 3.
Although MacVRoom is meant to be used with a three DOF position-
measuring device and its QuickDraw 3D driver (explained next month), we
do provide some code to couple the camera to the mouse. This allows you to
see the effect of the View Plane Camera without a tracker being present. Of
course you can only benefit from the head-coupled perspective when you
have a position-measuring device with three DOF. With a mouse the
perspective will look strange and distorted, though you can try to move your
head to find the eye position at which the perspective for the current mouse
position looks correct.

When a three DOF position-measuring device and its QuickDraw 3D driver
are present, we first get the position of the tracker from the tracker object.
To this raw position the calibration matrix is applied (Calibration is

MacTech Magazine Writer’s Kit Page 14
© 1984-1996, Xplain Corporation. All rights reserved.

necessary because it is neither possible to put the sensor in the middle of the
eye, nor the tracker in the middle of the pane. We will discuss calibration
extensively next month). Now we can use the resulting position to control the
camera. To keep the camera parallel to the Z-axis we make the point of
interest the same as the camera position, with the only difference that the z-
coordinate is set to zero. Now we need to specify which part of the imaging
plane we wish to record. We do this by setting the viewPlane,
centerXOnViewPlane and centerYOnViewPlane parameters. The viewPlane
parameter is the distance from the camera to the viewPlane. We can simply
set it to the value of the z-coordinate of the camera position. The
centerXOnViewPlane and centerYOnViewPlane are set to the minus x-
coordinate and the minus y-coordinate of the virtual camera. This ensures
that we’re always looking at an imaging area which is centred around the
world origin. As the cubic display space is also centred around the world
origin, it does not shift within the pane, even though the camera is translated
without being rotated.

Listing 3: ViewPlaneCamera.c
AdjustViewPlaneCamera

TQ3Status AdjustViewPlaneCamera(DocumentPtr theDocument)
{

Point mousePosition ;

TQ3CameraObject myCamera ;
TQ3CameraPlacement myCameraPlacement;
TQ3Point3D from, to;
TQ3Vector3D up = { 0.0, 1.0, 0.0 };
float viewPlane;
float centerX;
float centerY;

TQ3Status status;

TQ3Boolean positionChanged;

// If no controller could be found
// during initialization, fTracker was set to NULL.
// In that case we're using mouse control.
// This allows us to check whether things are working
// alright without a tracker present.

if (theDocument->fTracker == NULL)
{

GetMouse(&mousePosition) ;
LocalToGlobal(&mousePosition) ;

MacTech Magazine Writer’s Kit Page 15
© 1984-1996, Xplain Corporation. All rights reserved.

// Set camera position based on mouse coordinates.
// Since the mouse has only got two DOF we're
// setting the Z-coordinate to a fixed value.
// We have chosen to set it to 5.0 * the pane width,
// which is a reasonable approximation of the observer-screen distance.
from.x =(float)(mousePosition.h-gScreenMiddle.h)/10;
from.y =(float)(mousePosition.v-gScreenMiddle.v)/10;
from.z =5.0;

}
else
{

// Get the position from the tracker object.
status = Q3Tracker_GetPosition(

theDocument->fTracker,
&from,
NULL,
&positionChanged,
NULL);

// If it fails or doesn't bring us a new position
// we're not bothering with adjusting
// the virtual camera.
if ((status != kQ3Success) ||

(positionChanged == kQ3False)) goto bail;

// apply the calibration matrix on the raw position
Q3Point3D_Transform(&from, &gCalibrationMatrix,

&from);
}

// Set the point the camera looks at
// the line of sight of the camera is always
// parallel to the Z-axis, so we can simply
// set the Z-coordinate to zero.
to.x = from.x;
to.y = from.y;
to.z = 0.0;

// Fill in the camera placement.
myCameraPlacement.cameraLocation = from;
myCameraPlacement.pointOfInterest = to;
myCameraPlacement.upVector = up;

// The distance to the viewPlane is simply
// the value of the Z-coordinate.
viewPlane = from.z;

// We're cutting out a piece of the viewPlane
// centered around {0,0,0}.
centerX = -from.x;

MacTech Magazine Writer’s Kit Page 16
© 1984-1996, Xplain Corporation. All rights reserved.

centerY = -from.y ;

// Work out the range of the hither an yon
// This is to make sure we don't get Z-buffer problems
myRange.hither = from.z - 0.5;
myRange.yon = from.z + 0.5;

// Get the camera from the view
Q3View_GetCamera (theDocument->fView, &myCamera);

// Fill in the fields of the camera
Q3Camera_SetPlacement(myCamera,&myCameraPlacement);
Q3ViewPlaneCamera_SetViewPlane (myCamera, viewPlane);
Q3ViewPlaneCamera_SetCenterX (myCamera, centerX);
Q3ViewPlaneCamera_SetCenterY (myCamera, centerY);
Q3Camera_SetRange(myCamera, &myRange);

// Dispose of the camera object
Q3Object_Dispose(myCamera) ;

return kQ3Success ;

bail:
return kQ3Failure ;

}

USING YOUR HEAD-TRACKED DISPLAY

How to Use MacVRoom

MacVRoom allows the user to calibrate the tracker, load a 3DMF model,
display it inside a concave, cubic space and look at it from different points of
view by moving his head. If a position tracker and driver can be found,
MacVRoom starts with a calibration procedure. Please follow the on-screen
instructions. The user is asked to keep the sensor twice the width of the pane
in front of the top-left corner of the pane and to press return. This process is
then repeated for the bottom-right corner of the pane (Next month we will
provide you with much more info on calibration, as well as a more accurate
calibration method). If no position tracker and driver can be found,
MacVRoom switches to mouse control, and the calibration procedure is
skipped.

To create an undisturbed backdrop for the rendering, MacVRoom hides
the Finder and any other application by a window which covers the whole
screen, and creates a QuickDraw 3D pane inside that window. The cubic
space in which the model is displayed is formed by three square polygons
(Figure 8). Its center is at the center of the pane and the front-rear diagonal
of its ground plane runs parallel to the z-axis.

MacTech Magazine Writer’s Kit Page 17
© 1984-1996, Xplain Corporation. All rights reserved.

From the projection menu the user can choose between two different
projection methods called the Delft Virtual Window System (DVWS) (Figure
4) and Fish Tank VR (Figure 5). Please read the section “Introduction to
Head-tracked Camera Methods” for an explanation of these terms. With the
DVWS, the middle of the left-right diagonal plane of the cubic display space
appears to be pinned to the monitor screen. With Fish Tank VR, the whole of
the diagonal plane coincides with the monitor screen. The left and right
vertical edges thus appear to be stuck to the screen.

Figure 8, A screenshot of the MacVRoom application.

When everything is up and running you will see a status bar above the
rendering pane. This status bar gives you the following information:

Frame count: The number of frames that have been rendered so far.

T i m e: The time which has elapsed since rendering the first frame.

'Single frame' fps: This frame rate in frames per second is the inverse of the
time it takes to render a single frame. It does not take into account the
time it takes to complete other tasks, such as event handling and
adjustment of the camera. Note that, depending on the complexity of the

MacTech Magazine Writer’s Kit Page 18
© 1984-1996, Xplain Corporation. All rights reserved.

model and the speed of the Mac, you may get figures exceeding the screen
refresh rate. While the Mac can render the model at a frame rate greater
than the screen refresh rate, it can never display the rendered images at
such a rate.

Cumulative fps: This is the frame rate in frames per second calculated by
dividing the elapsed time by the number of frames rendered since start up.
This cumulative frame rate suffers from start-up overhead. You'll notice
that it slowly increases.

Raw coordinates: These are the x, y and z coordinates as they come in from
the driver application.

Calibrated coordinates: These are the x, y and z coordinates of the virtual
camera .

Where to Place the Sensor

OK, so you’ve got a PowerMac with QuickDraw 3D, a three DOF tracker, a
driver and MacVRoom, and everything is calibrated. All you need to do now
is to attach the sensor to the head in some way. You can choose between
viewing the scene with one eye or with two eyes. Some people find that, in
absence of stereo imaging, one-eyed viewing of the virtual scene results in a
more convincing depth impression than two-eyed viewing. This may be
because with two-eyed viewing there is a depth cue conflict between the
stereoscopically perceived surroundings (Mac, monitor, table etc.) and the
monoscopic virtual scene. A disadvantage of viewing the scene with one eye
is that you either need to keep the other eye closed or wear an eye patch,
which means more headwear and thus discomfort.

If you use one eye, try to mount the sensor as close to the viewing eye as
possible (Figure 9 and 10). Remember that we’re trying to establish the
position of the eye. As we cannot mount the sensor in the eye we have to
make do with mounting the sensor near the eye. As a consequence there will
always be some amount of viewpoint dislocation. Since we’re using a sensor
which provides only position and no rotation information we cannot
accurately compensate for this dislocation as we do not know which way the
user’s head is tilted. If you’re viewing with two eyes, you may wish to
consider mounting the sensor between the eyes. In either case you could you
use a headband or just the frame of a pair of spectacles. Before you mount
the sensor to headband or glasses, make sure that the orientation and
position of the sensor is such that it stays within track of the base unit in the
region in front of the monitor.

MacTech Magazine Writer’s Kit Page 19
© 1984-1996, Xplain Corporation. All rights reserved.

dydy

Figure 9, The FreeD sensor mounted in the middle for two-eyed viewing
(left), and above the right eye for one-eyed viewing (right).

dydy

Figure 10, The Dynasight reflector mounted in the middle for two-eyed
viewing (left), and above the right eye for one-eyed viewing (right). Note that

the offset in the vertical direction (dy) differs.

Trouble shooting

What if it kind of works but you don’t find it really convincing? The
following hints may give some improvement:

1. Have you accurately followed the calibration procedure? If the sensor is
not accurately calibrated the virtual camera does not correspond to the
user’s head position. To the user this misalignment appears as distortion.
You can check whether the system is properly calibrated by looking at the
calibrated coordinate field in the status bar, and holding the sensor
stationary in the following locations. The left edge of the pane should give
x=-0.5 and the right edge x=0.5. As we're working with a width:height ratio
of 1:√ 2 the top edge of the pane should give 0.71 and the bottom edge -
0.71. Holding the sensor in front of the monitor by the width of the
window, should give a z-coordinate of z=1. Of course these figures are only
approximate. It is unlikely that you will find exactly these values, but at
least you can find out whether calibration is OK-ish or has gone completely
haywire. If the values are off, restart MacVRoom to calibrate the system
anew.

2 . Is the frame-rate acceptable on your machine? Below 15 fps you’ll
probably suffer from a lot of delay. Make sure you are running with the
QuickDraw 3D runtime extensions rather than the debug extensions as the
latter are much slower. Try switching off the textures on the background

MacTech Magazine Writer’s Kit Page 20
© 1984-1996, Xplain Corporation. All rights reserved.

planes by changing the conditional compiler statement “#define TEXTURE
1” to “#define TEXTURE 0”. Try loading a less complex model with fewer
polygons and fewer textures. Try running in thousands rather than
millions of colors. Make sure that AppleTalk is inactive and that you don’t
have any extensions active which cause noticeable interrupts, such as fax
extensions. Anything which overlaps the rendering pane, either another
window or the control strip will cause performance degradation.
Remember that QuickDraw 3D does not like virtual memory. Your choice
of geometry can have a considerable influence on frame rate. With the
interactive renderer trimeshes yield the best performance, meshes the
worst, with polyhedrons somewhere in between (Schneider, 1996; Zako et
al., 1997). 3DMF Models can often be made to render significantly faster
by using 3DMF Optimizer (Pangea). Finally, if you are running without
hardware acceleration and use a PCI PowerMac, consider adding an
accelerator board. There is lots of information available on the QuickDraw
3D home page.

CONCLUSIONS

In this month’s Part I we documented the graphics-related aspects of the
implementation of a head-tracked display on PowerMacintosh using
QuickDraw 3D. A head-tracked display gives the user a depth impression of a
3D scene without the use of stereoscopy. We showed you how to use the View
Plane camera to achieve a perspective projection which takes the user’s head
position into account. We also showed you how to use the viewer application
and how to troubleshoot. In next month’s Part II we will have a look at the
hardware-related issues of our head-tracked display.

ACKNOWLEDGMENTS

We gratefully acknowledge P.J. Stappers, J.M. Hennessey, C.J. Overbeeke
and A. van der Helm, for their constructive criticism during the preparation
of this article.

BIBLIOGRAPHY AND REFERENCES

Apple Computer, Inc. (1995). 3D Graphics Programming With QuickDraw
3 D. Reading, MA: Addison-Wesley Publishing Company.

Fernicola, P. and Thompson, N. (1995, June). QuickDraw 3D: a New
Dimension in Macintosh Graphics. Develop 22, pp.6-28

Greenstone, B. (1995). QuickDraw 3D. In McCornack et al. (eds.), Tricks of
the Mac Game Programming Gurus (pp. 491-546). Indianapolis, IN: Hayden
Books.

Pangea Software, http://www.realtime.net/~pangea/.

MacTech Magazine Writer’s Kit Page 21
© 1984-1996, Xplain Corporation. All rights reserved.

Overbeeke, C.J., Smets, G.J.F. and S t ra tmann, M.H. (1987). Depth on a flat
screen II. Perceptual Motor Skills 65, p.120.

Quickdraw 3D home page, http://www.apple.com/quicktime/qd3d/

Schneider, P.J. (1996, December). New QuickDraw 3D Geometries. Develop
2 8 .

Smets, G.J.F., Overbeeke, C.J. & Stratmann, M.H., (1987). Depth on a flat
screen. Perceptual Motor Skills 64, pp.1023-1034.

Ware, C., Arthur, K. & Booth, K.S. (1993). Fish tank virtual reality.
Proceedings of the INTERCHI'93, pp.37-42.

Zako, R. and the Artifice Support and Testing Team (1997).
ht tp: / /www.art i f ice .com/tech/geometry_performance.html.

