
MacTech Magazine Writer’s Kit Page 1
© 1984-1996, Xplain Corporation. All rights reserved.

MICROCONTROLLER PROGRAMMING
By Tom Djajadiningrat

PIC Microcontroller Programming on
MacOSX
Using a VOTI Wisp628 with JAL and XWisp

Tom Djajadiningrat works for the Designed Intelligence Group of the Faculty of Industrial
Design of Eindhoven University of Technology. Recently, his wife gave him a brand-new,

3.5kg, non-Apple laptop. Admittingly, he now uses his Ti-Book much less as his new
laptop seems in every way more intelligent and fun and seems to become even more so by
the day. Its only disadvantage may be that it also grows even heavier every day. You can

flame him on his Apple infidelity at j.p.djajadiningrat@tue.nl

ABSTRACT

This article explains how to program a Microchip PIC microcontroller on a Macintosh
running OSX. The programmer hardware that is used is a Wisp628 by Van Ooijen
Technische Informatica. The software consists of two parts, JAL and XWisp. JAL is an open
source, high-level language that is used to generate a PIC compatible hex file. XWisp is
Python-based, open source software that is used to upload the hex file from the Macintosh
host via the Wisp628 programmer board to the PIC microcontroller. The article explains
how to compile JAL for MacOSX, how to create a connection from the Mac via the Wisp628
programmer board to the target circuit containing the PIC, how to upload a hex file using
XWisp, and how to create a simple LED flashing program.

INTRODUCTION

Software for electronic engineering purposes has been far from a stronghold for the
Macintosh. Especially affordable, electronic hobbyist level software that is compatible with
a Mac has traditionally been hard to find. Luckily, with the arrival of OSX this has changed
somewhat. Due to OSX's UNIX underpinnings it is possible to recompile many open source
software packages to run on a Mac.

In this article we show how to use two pieces of open source software for
microcontroller programming on an OSX Mac. One we will recompile using the GCC
compiler, the other we can run using Python. Both the GCC compiler and Python are
standard components of the Apple Developer Tools for OSX. Don't worry if you have
never done any of this before: this article is meant as an absolute beginner's guide. We'll
take it nice and slowly, guiding you through the whole process, one step at a time.

MacTech Magazine Writer’s Kit Page 2
© 1984-1996, Xplain Corporation. All rights reserved.

REQUIRED HARDWARE AND SOFTWARE

This is what you need to get PIC programming on a Mac.

Hardware
• Macintosh running OSX.2 or OSX.3
• a USB-serial adapter. There are several types on the market. We tested two:

• Keyspan USB High Speed Serial Adapter USA-19QW (Figure 1)
costs: approx. 40-50 USD
info: www.keyspan.com

• GMUS-03 USB Serial Adapter (Figure 2)
costs: approx. 22 USD
available from: www.voti.nl

• XWisp 628 programmer board (Figure 3)
available from: www.voti.nl.
costs: assembled approx. 35 USD. As a kit: approx. 24 USD.

• DB9 'straight-thru' male-female serial cable (if your physical workspace is close to
your USB port you may be able to do without it and connect your USB-serial adapter
straight to the XWisp 628 programmer board)
• Microchip PIC-16f877 microcontroller or its slightly cheaper successor, the PIC-

16f877A. These are popular PICs with high specs.
available from: most electronics stores, including www.voti.nl.
costs: approx. 10 USD for the 16f877 or 8.50 USD for the 16f877A

• Electronics breadboard
available from: most electronics stores, including www.voti.nl
costs: from approx. 11 USD

Figure 1: Keyspan USB High Speed Serial Adapter USA-19QW

MacTech Magazine Writer’s Kit Page 3
© 1984-1996, Xplain Corporation. All rights reserved.

Figure 2: GMUS-03 USB-serial adapter

Figure 3: The XWisp 628 programmer board by VOTI. The left-hand side is connected to the USB-
serial Adapter through a straight-thru DB9 male-female serial cable, the right-hand side accepts a

DB15 connector leading to the target circuit.

Software
• Apple Developer Tools

for MacOSX.2: December 2002 Developer Tools + August 2003 gcc Updater
for MacOSX.3: Xcode Tools v1.1
free download from: http://developer.apple.com/tools/download

• Keyspan drivers.
Make sure that you have a version that is compatible with your version of OSX.
free download from: http://www.keyspan.com/downloads/macosx/

• JAL, latest distribution. We used 0.4.59.
free download from: https://sourceforge.net/projects/jal/

MacTech Magazine Writer’s Kit Page 4
© 1984-1996, Xplain Corporation. All rights reserved.

• XWisp
free download from: http://www.voti.nl/xwisp/xwisp_src.tar.gz

The total costs add up to around 77-105 USD excluding shipping and handling,
depending on your choices. As you may have noted, the GMUS-03 USB-serial adapter is
considerably cheaper than the Keyspan. GMUS-03 Drivers for every flavour of OSX are
available and the thing works admirably for what we are doing in this article. However,
whilst Keyspan have certified their adapter with a great many serial devices, with the
GMUS-03 your mileage may vary.

You can save some costs by buying the WISP628 programmer in kit-form, rather than
ready-assembled, and by going for a cheaper model PIC.

JAL

We tackle JAL in three parts. Firstly, we prepare JAL for OSX by making a minor
change to the code, then we recompile JAL, and, finally, we try out our newly created JAL
executable.

Preparing JAL’s source code for OSX
Assuming that you have downloaded all the required software components, we start

with compiling JAL for Mac OSX. To do this you have to work with Terminal. In the
Finder, start up Terminal which is located in the folder /Applications/Utilities.
Now we have to navigate to the JAL folder. I dropped mine in Applications. The easiest
way to change directory in Terminal is to type cd, followed by a space, and then drag the
folder you want to navigate to from the Finder onto the Terminal window. Terminal will
then add the correct, absolute path. In my case, the Terminal window says:
J-P-Djajadiningrats-Computer:~ Tom$cd /Applications/jal-
0.4.59

In your case, Terminal may say something different, depending on the version of the
JAL distribution and on where you put it. Type ENTER to change to this directory.

From now on, we use a dollar sign to represent the Terminal prompt. For all clarity, you
only need to type what follows the dollar sign, not the dollar sign itself. Also, this was the
first and last time we mentioned that you need to type ENTER after each Terminal
command.

Do a listing of the Jal-0.4.59 directory by typing:
$ls -F

This should give you the contents of the JAL directory as shown in the screenshot in
Figure 4. The operand -F makes that the listing displays directories followed by a slash ('/')
and executables by an asterisk ('*').

MacTech Magazine Writer’s Kit Page 5
© 1984-1996, Xplain Corporation. All rights reserved.

Figure 4: Navigating to and listing the jal-0.4.59 folder

Within the Jal-0.4.59 folder, we now navigate to the source code directory which is
simply called jal:
$cd jal

To see a listing of the source code in the jal directory you can again type:
$ls -F

Before we can start compiling we have to make a small change to the file stdhdr.h
(note that if you have a newer release than 0.4.59, this change may not be necessary
anymore). Type:
$open stdhdr.h

Depending on what version of the Apple Developer Tools you are using, stdhdr.h
opens in either ProjectBuilder or Xcode. Look for the piece of code in Listing 1a.

Listing 1a: stdhdr.h
#ifdef HAVE_MALLOC_H

#ifdef HAVE_MALLOC_H
#include <malloc.h>
#else
void *malloc(int);
#endif

Comment out these lines, C style, by adding slash-asterisk ('/*') in front and asterisk-
slash behind ('*/') so that the block of code looks like Listing 1b.

Listing 1b: stdhdr.h
#ifdef HAVE_MALLOC_H

/*
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#else
void *malloc(int);
#endif
*/

Don't worry too much about why you need to make these changes. Basically, on OSX
we already get access to malloc by including stdlib.h, and therefore including malloc.h

MacTech Magazine Writer’s Kit Page 6
© 1984-1996, Xplain Corporation. All rights reserved.

gives 'already defined' errors. Close the file in ProjectBuilder/Xcode and save your
changes. Now we are ready to start compiling.

Compiling JAL
Switch back to Terminal and change to the directory jal-0.4.59 which means we have to

go one directory level upwards. Type:
$cd ..

The next step is to configure compilation for your Mac by launching the UNIX
executable configure:
$./configure

Running it takes a little while, during which you see a whole bunch of checks rolling by.
Finally, Terminal should print the message in Listing 2:

Listing 2: $./configure
Closing remarks during compilation

jal-0.4.59 is now configured for

 Build: powerpc-apple-darwin7.0.0
 Host: powerpc-apple-darwin7.0.0
 Source directory: .
 Installation prefix: /usr/local
 C compiler: gcc -g -O2

Now type:
$make

This takes longer, as gcc compiles JAL. To complete the installation process type:
$sudo make install

Note the sudo (superuser do) command. It allows an administrator—which presumably
you are when you are on your own Mac—to run commands as superuser. Basically,
becoming superuser upgrades your priviliges so that you may access files and directories
which normally are protected against (accidental) misuse. In this case, we want to install
into the /usr/local/bin directory which is a protected directory. After entering this
command, Terminal therefore asks you for your password. Once you have given it,
Terminal responds as per Listing 3.

Listing 3: $sudo make install
Response to $sudo make install

/bin/sh ../mkinstalldirs /usr/local/bin
 /usr/bin/install -c jal /usr/local/bin/jal
make[1]: Nothing to be done for `install-data-am'.

As you can see, the JAL executable ends up in the directory /usr/local/bin. To
convince ourselves, change to the installation directory and do a listing:
$cd /usr/local/bin
$ls -F

And there you have it: jal followed by an asterisk, indicating that this is an executable.
But there is more to the Jal installation than just the executable. There are also several
include files. Let's see whether we can find them.

Change to the parent directory /usr/local and do a listing:
$cd ..
$ls -F

MacTech Magazine Writer’s Kit Page 7
© 1984-1996, Xplain Corporation. All rights reserved.

In it you see a directory named share. Change to it and do a listing:
$cd share
ls -F

There you find a directory called jal. Change to it and do a listing:
$cd jal
$ls -F

Finally, there is the lib directory. In this directory you find a couple of dozen of
include files:
$cd lib
$ls -F

I hope this gives you a feel for where your Jal installation ends up.

Taking JAL for a spin
Create a directory somewhere convenient for your JAL source files. Mine is called src

and lives on a partition called Data. Now we create a JAL source file. First, using a text
editor of your choosing (I used XCode), create a new empty file and type in the code in
Listing 4. Don't worry about the exact meaning of the code for the moment. If you are
curious, later on we will use this JAL program to flash an LED connected to pin a0 of our
PIC:

Listing 4: ledflash.jal
The full ledflash.jal source file

include 16f877_20
include jlib
disable_a_d_functions

pin_a0_direction = output

forever loop
pin_a0 = high
delay_10mS(255)
pin_a0 = low
delay_10mS(50)

end loop
Save the file into your source file directory under the name ledflash.jal. The filename

itself is up to you, but it is critical that you use the .jal extension.
Change to your source file directory by typing cd, followed by a space and then

dragging the directory from the Finder onto your Terminal window:
$cd /Volumes/Data/src

Do a sanity check verifying that the file ledflash.jal is actually in there:
$ls

And now, for the moment suprême. Let's try compiling ledflash.jal using our jal
executable:
$/usr/local/bin/jal ledflash.jal

As ledflash.jal is compiled, you see the lines flash by and, finally, Terminal responds as
in Listing 5:

Listing 5: $/usr/local/bin/jal ledflash.jal
JAL compiling ledflash.jal

jal 0.4.59 (GCC 3.3)

MacTech Magazine Writer’s Kit Page 8
© 1984-1996, Xplain Corporation. All rights reserved.

input files:12 lines:2244 chars:58707 (2952
lines/second)
compilation nodes:12695 stack:53Kb heap:3928Kb
seconds:0.760
output code:101 file:14 stack:2
OK

Have a look what is in our src directory now:
$ls

There you have it: in addition to a .jal file, there are now an assembler file (ledflash.asm)
and a hex file (ledflash.hex). Drag them onto your favourite text editor to see their content:

The hex file is very compact as shown in Listing 6.

Listing 6: ledflash.hex
The ledflash.hex file resulting from compiling ledflash.jal with JAL

:020000040000FA
:020000000428D2
:08000800FF30A100FF30A2004F
:10001000FF30A300FF30A4000F30A5008A110A12A0
:100020004E2021108A110A125C2026148A110A120D
:100030005620FF308A110A122B2026108A110A122C
:10004000562032308A110A122B208A110A121528E2
:100050008A110A122828A7002708A8006430A900DE
:1000600001308A110A123428AA00FF30AB00290897
:10007000AD002808AC0077308A110A122B0703184C
:100080003E288A110A12AC0B3B288A110A12AD0BCA
:1000900039288A110A12AA0B372808008A110A1275
:1000A000622007309F008A110A1265288A110A12FD
:1000B00059282608850008008A110A125F2821089D
:1000C0006500080083160313080083120313080059
:02400E00723FFF
:00000001FF

The assembler file is something you are supposed to never need. The gurus use it to
debug the compiler and to learn how assembler works, ie. to figure out what the PIC really
does for A = B + C.

So far so good. We can write a simple .jal file and compile it using an OSX native JAL
executable, resulting in a hex file suitable for a PIC microcontroller. Now how do we
actually upload this hex file from the Mac to the PIC?

UPLOADING THE HEX FILE

First, we need to get our physical, serial connection between the Mac, the Wisp628 and
the PIC microcontroller in order, then we look into how to use the XWisp software to
upload our hex file to the PIC.

Serial connection
Plug your USB adapter into the USB port of your Mac. Assuming that you are using a

Keyspan, you can do a check by running the Keyspan Serial Assistant which lives in your
Applications folder. The Serial Assistant should recognize the adapter (Figure 5).

MacTech Magazine Writer’s Kit Page 9
© 1984-1996, Xplain Corporation. All rights reserved.

Figure 5: The Keyspan Serial Assistant acknowledges the adapter

Depending on the cable length you need between your USB port and your physical
workspace, you can connect the Wisp628 board directly to the USB adapter or connect it
using a 'straight-thru' DB9 serial cable,

With the Wisp628 comes a cable which has a DB15 female plug on one end and which
has bare wires on the other end. Plug the DB15 female plug onto the Wisp 628 board.

Plug the 16f877 microcontroller into a breadboard
The necessary circuitry consists of two parts: a regulated 5V power supply (Figure 6)

and a target circuit including the PIC (Figure 7). As these circuit diagrams may turn out to
be hard to read when scaled to the width of a single MacTech column, the code archive
includes PDF versions of both.

Figure 6: A regulated 5V power supply

MacTech Magazine Writer’s Kit Page 10
© 1984-1996, Xplain Corporation. All rights reserved.

Figure 7: The target circuit with the PIC

You can build a stable 5V supply starting from a 9V battery or from a 9V DC power
supply. I would recommend that you use a 9V DC power supply rather than a battery since
the voltage regulator tends to eat through 9V batteries rather quickly.

Components for regulated 5V power supply:
1x 9V DC power supply or a 9V battery with a clip-on adapter
1x 7805 voltage regulator
1x green LED
2x 330Ohm resistor
2x 100-1000µF capacitor
The resistor and the LED are not strictly necessary but do make the final check very

easy: the LED should light up.
Components for the target circuit with PIC:
1x 330Ohm resistor
1x 33kOhm resistor
1x red LED
1x 20MHz crystal
2x 20pF capacitors
1x 1n4004 diode
1x 22µF capacitor
1x 0.1µF capacitor
The 1n4004 is a 'fool's diode': if you accidentally reverse the polarity of your power

supply it will prevent damage to your PIC. Of course, the diode has its limits. If you
happen to use a supply that is capable of delivering high currents (>1A), such as an old PC
power supply, the diode will blow and the PIC will be damaged after all.

All that is left now, is to connect the Wisp628 board to the PIC in the breadboard and
build a small test circuit around the PIC. This is detailed for various PIC microcontrollers

MacTech Magazine Writer’s Kit Page 11
© 1984-1996, Xplain Corporation. All rights reserved.

on http://www.voti.nl/wisp628/n_index.html. Here we focus on the connections for a
16F877 microcontroller (Figure 8).

Figure 8: Connections between the DB15 connector of the XWisp 628 and the target circuit with the
PIC

Figure 9 shows how things were wired on my breadboard. Be aware that some
breadboards, including this one, have breaks in the middle of the power rails which you
need to bridge if you want to use both the left and the right half. Again, a high-res JPEG
picture is included in the code archive.

Figure 9: The 5V power supply and the target circuit with the PIC. Everything to the left of the wire
bridges in the power rails forms part of the 5V power supply, everything to the right forms part of
the target circuit with the PIC. The red and black lead coming in from the top-left are connected to

the 9V battery/power-supply. All the other flying leads go to the Wisp 628.

Using XWisp
Now we can work on the software side of uploading the ledflash.hex file to the target

circuit. For this we use the Python-based XWisp. Before we can issue the upload command
we need to do three things. Firstly, we make a small modification to one XWisp source file
to enable XWisp to run on OSX (Just as with the Jal source, you may find that in the latest
release of XWisp, this modification may not be necessary anymore). Secondly, we copy the
XWisp folder to /usr/bin. And, finally, we find the name of the serial port provided by the
USB-serial adapter and its driver software.

MacTech Magazine Writer’s Kit Page 12
© 1984-1996, Xplain Corporation. All rights reserved.

Modifying XWisp
In the xwisp_src Folder that you downloaded you find six files. Drop the file

xwisp.py on ProjectBuilder or Xcode to open it. Use the Find command to look for
CMD_Port. In this definition, look for the line of code saying:
Name = self.Get_arg(Uppercase = 0)

After this line, we need to add two lines:
self.Port = Name # these two lines are added
return # to use the port name 'as is'

Please note that Python code is indentation sensitive. Indents are to Python what curly
brackets are to C. You need to make sure that the two added lines are on the same
indentation level as the line
if Name == None:

Just to make sure, the finished version of the CMD_PORT definition is shown in the
screenshot in Figure 10.

Figure 10: a screenshot of the CMD_Port module after the necessary changes

Copying XWisp
Rename the folder named xwisp_src Folder to just xwisp. Now we need to copy

the folder to /usr/bin. Unfortunately, we cannot simply use the Finder as the folder /usr
is hidden. Therefore we again turn to Terminal. Type sudo cp -R, followed by a space,
then drag our xwisp folder onto Terminal like we did before, and finally type
/usr/local. In my case, the command looked like:
$sudo cp -R /Users/Tom/Desktop/xwisp /usr/local

This copied the xwisp folder with all its content. Now do a listing of the directory
/usr/local.
$ls -F /usr/local

In the listing you should find the directory xwisp. If you wish to convince yourself that
we have not only copied the folder but its contents too, do a listing of the contents of the
xwisp directory:
$ls /usr/local/xwisp

MacTech Magazine Writer’s Kit Page 13
© 1984-1996, Xplain Corporation. All rights reserved.

Finding out the name of the serial port
In terminal, type:

$ls /dev
If you have the Keyspan adapter, look for a serial port named something like

tty.USA19QW181P1.1. The name may differ with the exact type of Keyspan adapter you
have got. If you use a GMUS-03, look for a port named something like tty.usbserial0.
Note down the name somewhere as we will need it in a moment.

We are nearing yet another moment suprême. To run XWisp you need Python which
luckily forms part of the Apple Developer Tools.

Change to the directory where you keep your .jal, .asm and .hex files. In my case:
$cd /Volumes/Data/src

OK, ready? We have xwisp.py living in /usr/local/xwisp, ledflash.hex living in our
working directory and a serial port living in /dev. Now, on a single line, type this if you
have the Keyspan adapter:
$python /usr/local/xwisp/xwisp.py port
/dev/tty.USA19QW181P1.1 go ledflash.hex

Or this if you use the GMUS-03 adapter:
$python /usr/local/xwisp/xwisp.py port
/dev/tty.usbserial0 go ledflash.hex

If you are (very) lucky, the LED connected to pin a0 of the PIC microcontroller starts
flashing. No joy? No need to panic, yet. With a setup with this many components, it
unlikely that you get things running the first time round. Which brings us to...

TROUBLE SHOOTING

Stuck?
Here are some things to check:

Do you manage to run XWisp?
When you try to run XWisp, Terminal should respond with printing some lines, the first

of which reads:
XWisp 1.08, command line mode

If it does not, make sure that XWisp really lives where you think it lives.

Are you really reaching that serial port?
Usually, you can figure out from the error message in Terminal if you do not address

the serial port correctly (If you use the Keyspan adapter you can look at its LED: it should
start flickering during uploading of the hex file). If not, check the physical connection
between Mac and USB-serial adapter, check the name of the serial port, and make sure that
you have specified the complete path: you really need that /dev/ in front of the port name.

Does your power supply (still) work?
Check whether the LED in your power supply circuit is on. But even if it is on, the

voltage over the PIC may have dropped to unacceptable levels. The 7805 voltage regulator
needs about 2V headroom to do its work: to create 5V output it needs at least 7V input.
With a 9V battery you can quickly drop below this 7V level. If you find that you are going
through your 9V battery a bit too quickly, you may want to replace it by a 9-12V power

MacTech Magazine Writer’s Kit Page 14
© 1984-1996, Xplain Corporation. All rights reserved.

adapter. A low supply voltage may lead to all kinds of weird behaviour: at 4.5V the PIC
may run its program still fine, but programming it may have become impossible.

Is your target circuit correctly hooked up?
Check the wires between the Wisp628 and your target circuit.
Make sure that you really have +5V on pins 11 and 32 and ground on pins 12 and 31.

And finally... is your LED the right way round?
Well, I'm sure you wouldn't be the first... The flat side or shorter lead is the cathode and

should be connected to pin a0. The other side, the anode, is connected to +5V. When you
are in doubt whether the LED is connected correctly, just disconnect the PIC-side of the
LED and connect that side to ground (0 Volt). The LED should light up. If it does not, it is
reversed (or there is no power).

Still stuck?
On www.voti.nl you can find some highly detailed pages to help you trouble shoot.

Desperate?
There is a great Yahoo Group for Jal users:
http://groups.yahoo.com/group/jallist/
Strictly speaking this group is for Jal questions only, but you would not be the first to

start a discussion about the Wisp 628.

CONCLUSIONS

So there you have it: programming a PIC microcontroller on a Mac. It takes a little time
and perseverance to set it all up. But it works, have fun!

ACKNOWLEDGEMENTS

I gratefully acknowledge my colleagues Peter Peters and Joep Frens at the Designed
Intelligence Group of Eindhoven University of Technology for checking the manuscript.
Many thanks also to Wouter van Ooijen of Van Ooijen Technische Informatica to get all of
this running, and to Daniel Saakes of the ID-StudioLab of Delft University of Technology
for his Python on Mac advice.

REFERENCES

Microchip are the makers of the PICmicro microcontrollers series. Here you can find
datasheets for all model PICs.

http://www.microchip.com
VOTI, Van Ooijen Technische Informatica, are the makers of the Wisp628 hardware, the

XWisp software and the originators of JAL. Here you can find detailed instructions on all
their products as well as a web shop.

http://www.voti.nl
Keyspan are the makers of a USB-serial DB9 adapter.
http://www.keyspan.com

MacTech Magazine Writer’s Kit Page 15
© 1984-1996, Xplain Corporation. All rights reserved.

A MacOSX 10.3 Panther compatible driver for the GMUS can be found here (drivers for
older versions of OSX are provided on the installation CD.

http://www.ramelectronics.net/download/BF-810/OSX/
The Yahoo group ‘jallist’ is a forum for JAL users.
http://groups.yahoo.com/group/jallist/
Apple provides ProjectBuilder and Xcode as free downloads:
http://developer.apple.com/tools/download/
On source forge the open source community further develops Jal:
https://sourceforge.net/project/showfiles.php?group_id=71552
And finally, here you can find lots of information on PICmicros:
http://www.piclist.com

